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Abstract The decoupled sites representation (DSR) for one type of ligand allows
to regard complex overall titration curves as sum of classical Henderson-Hasselbalch
(HH) titration curves. In this work we transfer this theoretical approach to molecules
with different types of interacting ligands (e.g. protons and electrons), prove the exis-
tence of decoupled systems for 7] and one binding sites for two different ligands, and
point out some difficulties and limits of this transfer. A major difference to the DSR
for one type of ligand is the loss of uniqueness of the decoupled system. However, all
decoupled systems share a unique set of microstate probabilities and each decoupled
system corresponds to a certain permutation of these microstate probabilities. More-
over, we show that the titration curve of a certain binding site in the original system
can be regarded as linear combination of the titration curves of the individual sites of
the decoupled system if the weights of the linear combination are substituted by func-
tions in the activity of the second ligand. In the underlying model with only pairwise
interaction, an important observation of our theoretical investigation is the following:
Even though the binding sites of ligand L may not interact directly, they can show
secondary interaction due to the interaction with the second type of ligand. This means,
if the activity of the second ligand is fixed and we regard the 1-dimensional titration
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curve of an individual binding site for ligand L; depending on its activity, we may
observe a strong deviation from the classical HH shape in spite of non-interacting sites
for ligand L.

Keywords Decoupled sites representation - Protonation - Electron binding -
Different ligands - Binding polynomial - Interaction energy - Binding energy -
Transport - Transfer - Photosynthesis - Receptor

1 Introduction

Let us regard a chemical substance M dissolved in a solution containing another solute
L (the ligand). If L is able to bind reversibly to one special binding site of substance
M, the average binding of ligand L to the binding site in equilibrium will be described
by the rational function

al

X)=—,
alA +1

ey

where A denotes the ligand activity and a is a constant, depending on the temperature
(which is assumed constant) and the binding energy of this binding site. Equation (1)
represents the classical sigmoid Henderson-Hasselbalch (HH) titration curve [10,11].
Mathematically more challenging is the description of overall titration curves as well
as titration curves of individual sites of molecules with several interacting binding
sites. Interaction can lead to strong deviations from classical HH curves [1,2,4,5,17].
One step towards understanding the nature of these altered titration curves was the
decoupled sites representation which showed that for any molecule with interaction
between its binding sites, there exists a hypothetical molecule without interaction
exhibiting the same overall titration behaviour [14,15,12]. In this work, we transfer
the decoupled sites representation to molecules with two different types of ligands
e.g. protons and electrons. This problem is of biophysical interest as proteins involved
in electron transfer are often located in membranes with pH-gradient. Moreover, it
can be applied to any other transporter molecule with proton binding sites or recep-
tors with different types of ligands which are frequently a subject of investigation
[3,8,9,13,18,19]. Also from a mathematical point of view this transfer is not trivial
as one has to deal with polynomials of the polynomial ring in two variables C[A, «].
In the following we will summarize the mathematical basics of ligand binding in
equilibrium where we use a model in which every microstate energy is the sum of
binding and pairwise interaction energies. This model can be generalized by allow-
ing any state energy without using this additive structure, which corresponds to an
extended model incorporating additional interaction terms of three and more binding
sites. Even though we did not write down this extended model explicitly, our main
results are true for the extended model as well, as in the decoupled systems we can set
all additional interaction terms to zero which leads to the same systems of equations
as in the presented model.
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2 One type of ligand
2.1 The model

Let M be a molecule with n ligand binding sites. Then the ligand binding properties
of M in equilibrium can be described by an @—tuple

=@ g wlh L wh ) e T )
where C* = C\ {0} and m := w We call its entries “binding constants” and

“interaction constants”, which are given by

_paM
M= BG;

and
M
M _.BW,'J'

wi’j =e

where GM denotes the binding energy of site i, WA’]I the interaction energy of sites i
and j, and B a constant depending on the temperature (which is assumed constant).

For the sake of uniqueness of the corresponding tuple we use an equivalence relation
“~” on the set of energies defined by Definition 1 (compare [12]).

Definition 1 Let
= (gf, g?, .. .g,?, . wf_lyn)

and

=(gfg,g§,...gf,.. w,_ ln)eC*m

Then A is equivalent to B (Notation: A ~ B) if and only if a permutation o of
(1, ..., n) exists such that

B B B B B B
A= (81) 8 @) &) Wo(l).o2) Wo(l).oB) - Wo—1).0(m)- (3)
Thus, Eq. (2) can be changed to
kM
o= H. “4)

We call an element M € H a molecule and use a tuple as representative for the nota-
tion. For the definition of a map which maps M to a rational function in the ligand
activity, describing the average ligand binding of a certain site in equilibrium, the use
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of microstates facilitates notation. A microstate k is an n-tuple illustrating the binding
state of an individual molecule

k=@k x5 xeto,yvie(,. .. n)
and
xf =1 <= in microstate k, a ligand is bound to site i.

We use the notation K for the set of all microstates k. Obviously, the number of all
possible microstates is #K = 2", if a binding site can only exist in two possible states:
occupied and unoccupied. In the underlying model with only pairwise interaction, we
call

L
gy:=(Tte" [T w’ (5)
i=1 j=i+1

the microstate constant of microstate k which equals e(=#¢®) with G (k) the energy
of microstate k. Thus, the binding polynomial (bp) in the ligand activity A of molecule
M (which determines the overall titration) writes

Pu(A) =D g()A'® 6)

keK

with

1(k) = > xf
i=1

[5,16,20]. Note, that the map M +— Py (A) is well-defined as
M ~ N = Py(A) = Py(A).

In the following, we will have a closer look on the rational functions describing the
titration of a certain site and the overall titration curve. The average ligand binding at
site r, dependent on the ligand activity, is given by

oy = Sickaim SOAD B ) )
' ek gUON® T Py (A)

Equation (7) means that the polynomial in the numerator only consists of summands
given by microstates in which site r is occupied. Thus, the overall titration curve,
which only depends on the bp, is given by

2= Ey@)

X) =
W Py (A)

®)
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[5,16,20]. To distinguish between overall titration curves and titration curves of indi-
vidual sites we use a capital letter for the overall curve.

2.2 The decoupled sites representation

In this context, the decoupled sites representation can be expressed as proposition.

Proposition 1 [The decoupled sites representation]

Let M = (g{”, R g,i”, e, w%lﬂ) € H be a molecule. Then a unique molecule
L = (glL, ...,g,f, 1,..., 1) € H exists such that

Py (A) = PL(D).

Moreover, the energies giL, i €{l,...,n} of the decoupled systems are given by
8i = _A_i
with (A1, ..., A,) denoting any permutation of the roots of the bp.

Proof For the proof of Proposition 1 see [12]. (|

The aim of this work is to transfer the presented theory including the DSR to a situ-
ation with two different types of ligands. For this purpose the following corollary of
the DSR will turn out to be a very useful tool.

Corollary 1 Let V be the affine algebraic variety defined by the polynomials

n
an =[]y
j=1

n n

wi=3( T »

i=1 \j=1,j#i

n

an-2 = Z H YVj
{G,k)i<k} \j=l,i#j#k
n
a=2yj
j=1

in Cly1,...,yul. Then dim(V) = 0 and V is the set of all permutations of
(—All, el —A%’) with A; denoting the roots of

ap A" +ay AN+ a A+ 1.
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Proof The energies g; of a decoupled system are the elements of V. Thus, the state-
ment of Corollary 1 is a consequence of the DSR (or of Vieta‘s formulas). O

3 The model for two different types of ligands

At first, we transfer the setup described in Sect. 2 to the situation of two different types
of ligands. We assume that the ligands do not share binding sites, which means that
there are two disjunct sets of binding sites which can only be occupied by one type of
ligand. Analogously to Egs. (2)—(8) we receive the following framework: The equi-
librium binding properties of a molecule M with n; binding sites for ligand L (sites
1,2, ...,ny) and ny binding sites for ligand L, (sites Ay, A2, ..., A,,) are described

. (mitn)(ni+no+1)
by anm := ———"5—"—-tuple
M M M M M M M M
(gl ’.'.’gnl’gA]’...’gAnz’sz"..’wLAnz’.."wAl:AZ’...’wAnz—lsAnz)
km
—mecC ©)

However, the equivalence relation of Definition 1 has to be adapted.

Definition 2 Let C*" with m = w be the set of all tuples describing
molecules with n binding sites for ligand L; and n, binding sites for ligand L.
Moreover, let

_ (M M M M M M M
M = (gl v~-'ﬂgn1’gA|’""gA,,2’w1,2’""wl,Anz’""wAnz—l;Anz)
and
— (N N N N N N N
N = (81 ’""gnl’gAl’""gAnz’wl,Z’""wl,Anz""’wAnz_l,Anz)‘

Then M is equivalent to N (Notation: M ~ N) if and only if two permutations o of
(1,...,n7)and oy of (1, ..., np) exist such that

_ N N N N N
M= (gol(l)’ 0 8Agyny) Wor(1,012) ++* Wor (1), Agyny)* * " WAWTI),AUZ(”Z)) :
(10)

To simplify notation we will henceforth write g; for giM if itis clear to which molecule
the binding constant belongs to. Moreover, we use the microstate notation and

*Im
S~ =Gy,

with “~” according to Definition 2. Analogously to Eq. (6) we define the binding
polynomial in the ligand activities A and « of a molecule M with n; binding sites for

ligand L and n; binding sites for ligand L, by
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Pu(A, k) = " g Ah®ic® (1)
keK

with 7y (k) == X", xF and Lk) := Z:’;:lnil x¥ denoting the number of bound

ligands of both types and g (k) again the microstate constant of state k. The average
amount of bound ligand to site r in equilibrium is given by

() = Sikexig=n §OAT D L (ALK (12)
' S ek SOATEOE® T Py (A )

Equation (12) leads to the following overall titration curves for ligands L and L.

S EN (A k)

(X1) = P (A0 13)
A
zr;?Al E;W(A’ K)
(X2) = PoA. ) (14)

4 On decoupling molecules with two types of ligands

To get an idea, and to point out some problems with the transfer of the DSR, we give
two simple examples of hypothetical molecules whose bp can be calculated easily. We
will use the notation Py for Py (A, k) and EY}, for E} (A, «).

Example 1 Let M = (g1, ga, w1,4) = (%, 2, %) be a molecule with one binding site

for each type of ligand. Then:

1 1
PM:§AK+§A+2K+1

L1 1
Ejy = A%+ A

N 1
EM = §AK + 2k.
Moreover, we see here that it is not possible to decouple this system as the map

P :(g1,84, w1,4) > (8184W1,4, &1, 84)

which gives the coefficients of the polynomial, is injective. Thus, it is impossible to
find a molecule (g}, g;, 1) with the same binding polynomial.

Example 2 Let M = (g1, 82, 84, 1,2, Wi, 4, w2,4) = (3,2,3, 5,2, %) be a mole-

cule with two binding sites for ligand L and one for ligand of type L,. Then,
2 12 5
Py =A K+§A +5AK+§A+3K+1.
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In this situation of two and one bindings site(s) P is a map
P:Gy1 — C*.

Here, the image space C*> represents the polynomials in two variables with 6 coef-
ficients including the constant term which equals 1. Thus, it should not be injective
and decoupling might be possible. However, intuitively, it is clear, that not all interac-
tion energies can be trivial, as this would reduce the domain to C*3/ ~. Looking for
another molecule with the same binding polynomial means searching for a solution
(8], &5+ 84> u)’l’z, w’LA, w’z’A) to the system

Y AV Y A I 4
1 =g1884wi LW 4wy 4

1 / / /

- w

) 8182W1 2

5=g18awi A+ 828a W5 4 (15)
5 / /

> =& + &

3=4g4.

As g;‘ is fixed, the solutions to system (15), that is all molecules with bp Py, form
an algebraic variety V C C* defined by four polynomials. This means, under certain
conditions on the polynomials, dim(V) = 1. The systems without interaction between
the binding sites for the same type of ligand are given by

V N {(g1, g2, w12, wia, waa) € CP¥lwyp =1}

We used the computer algebra program Maxima to calculate the solutions. In this
special situation we receive the following tuples sharing the same binding polynomial
but with non-interacting sites for ligand L:

(2.2807762, 0.2192236, 3, 1, 0.6288467, 1.0601419),

(0.2192236, 2.2807762, 3, 1, 1.0601419, 0.6288467),

(2.2807762,0.2192236, 3, 1, 0.1018987, 6.5424460),

(0.2192236, 2.2807762, 3, 1, 6.5424460, 0.1018987).
Note that, as we are dealing with equivalence classes, the first and the second pair of
the solutions coincide. Calculating the same with w; 4 = 1 or wa 4 = 1 does not give
any solution. Remarkably, fixing g = 1 or go = 1 is solvable, however we will not

investigate this phenomenon further, as we are interested in decoupling the system,
which means setting interaction constants to 1.

Example 2 leads to the conjecture that it is possible to decouple the binding sites for
the same type of ligand. However, it is not generally possible to decouple different
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binding sites for different types of ligands which was illustrated by Example 1. For
this reason we call a system decoupled if its binding sites for the same type of ligand
do not interact directly. A very important point which is illustrated in Example 2 is the
loss of uniqueness of the decoupled system which is given in the case of one type of
ligand (Proposition 1). We formulate the DSR for two types of ligands the following
way:

Conjecture 1 Let

(.M M M M M M
M = (81 ’""gnngw""gAnz’wli’""wAnzq,Anz)

be a molecule with ny binding sites for ligand type L1 and ny binding sites for ligand
type L. Then at least one molecule

N = (gls ~'-7gn17gA17 -~'sgA,12a wl,z: ey wA"Z*I’A”Z)

exists, with w; j =1 VY{i, j} C{1,2,...,n1}, V{i, j} C{A1, Az, ..., Ap,}
and
Py = Py.

As we did not find a general proof for Conjecture 1 we will investigate the case np, = 1.
The problem with proving this conjecture generally, is the following: One could use
Hilbert’s weak Nullstellensatz and show that the ideal generated by the polynomials
[analogously to (15)] does not contain unity. Then the existence of a solution would
be guaranteed. However, to use this approach, one has to calculate the ideal generated
by the polynomials (e.g. the corresponding Grobner basis) without writing down the
polynomials explicitly as 1 and ny are not fixed. Another similar argumentation—
with the same problem— would be to calculate a Grobner basis to find partial solutions
in an elimination ideal and to extend theses solutions to full solutions of the system
under the use of the Extension Theorem. We will illustrate this argumentation after-
wards in detail. Another approach would be the use of a higher-dimensional analog of
the Bezout-Theorem. Yet, this would only give a statement for varieties in projective
space. The most promising idea might be to use the special structure of the polyno-
mials to give a proof constructively by reducing the problem to the proof of the DSR
for one type of ligand (Proposition 1). We will compare the second and the fourth
approach to prove Conjecture 1 for np = 1 in the next section and investigate which
unique properties all decoupled molecules share. The fact that a decoupled system is
not unique was illustrated by Example 2. However, Proposition 2 shows that at least
the binding constants are unique (except for permutations):

Proposition 2 Let

ny,n ni—1,_ n n ny, ny—1
Py = ny iy A" K"+ a1 g AR A a0,y K A Ay -t AT ]
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be a bp of a molecule with n binding sites for ligand Ly and n, binding sites for
ligand L. Let

_ (N N _N N N

N—(gl’""’gnlngl""’gA,lz’1"'"’wn1,An271-~-’1)
and

_ K K K K K

K—(gl,...,gnl,gAl,...,gAnz,l,..,wnl’Anz,l...,l)

be two different corresponding decoupled systems. Then there exist permutations o1
of {0, ...,n1} and oy of {0, ..., na} such that

N K
(gj ):l;] = (go'l(i)):"lél
and

N\n2 __ K na
(gAi)i:1 = (gAUQ(i))iZI'

Proof A decoupled system is in the preimage of Py, with respect to the map M +—
Pyy. In particular, it has to solve the subsystem of equations given by its coefficients
{ai,O};ll- As this subsystem is free of the binding constant variables {g4, }?2 , of ligand
L, it represents the case of the DSR for one type of ligand. Consequently, according

to Corollary 1, the set {g; }?1 | can be calculated from the roots of

anl,OAnl +an]71,0Anl_l 41,

which shows (giN 7; | = (gf1 ( l.))?; |- The same is true for the subsystem of equations

given by {aO,i}7i1 which gives the second result. (]
5 Molecules with n; to one binding sites

5.1 Decoupling

At first we will prove Conjecture 1 for the case (n1,n2) = (2,1) to compare the
approach of calculating the Grobner basis and using the Elimination and Extension
Theorems to the use of the special structure of the varieties we are dealing with.

Note that Proposition 4 includes the statement of Proposition 3. However, we will use
Proposition 3 to illustrate the different approaches for proving Conjecture 1.

Proposition 3 Let
M M M M M M
M = (g1 282 284> W12 Wy A w2,A)
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be a molecule with two binding sites for ligand L1 and one binding site for ligand L.
Then a molecule

N = (g1, 82,84, 1, w14, w2, 4)
exists such that
gA = gf([ and Py = Py.
Proof Let
Py = a2,1A2K + 612,01\2 +ai 1Ak +ar oA +ap 1k + 1

be the binding polynomial of molecule M. A molecule N =(g1, g2, g4, 1, w1, 4, w2, 4)
has to be a solution to the algebraic system

g?g%g%w{f’zw{‘ﬁw% =a2,1 = 1828AW,AW2 A
g{wgéww% =a2,0 = 8182
gt ehwily + e gl wly = a11 = g1gawi A + g28aw2.a (16)
g{”+g§” =aio0=g81+§

M
84 = 40,1 = 8A-

We regard these equations as polynomials in

Clg1, g2, 84, wWi,4, w2,4, a2,1,a2,0, a1,1, 41,0, ao,11

and use the computational algebra system Magma to calculate the Grobner basis GB
of the corresponding ideal (w.r.t. the lexicographic order g1 > g2 > ga > wi 4 >

- > ap,1, see [7]). Note that in this situation it is not enough to see that GB # {1} as
this only implies that there exists a solution to the system, however this does not show,
that there exists a solution for any choice of (az,1, a2,0, a1,1, a1,0, ao,1)- The last of 17
polynomials of the Grobner basis is

4 2 2 3 2
P17 = wy 405 gag | — W3 442,041,141,040,1 — 2W5 4a2,1a2,040,1
2 2 2 2 2
TWj 442,107 40,1 + W) 442,047 | — W2,402,141,141,0 + d3 |
and it defines the fourth elimination ideal (Elimination Theorem). Since the product

az0a0,1 7 0 and a1 # 0 we will find four solutions for w; 4. As the leading
coefficient of the 16th polynomial (regarded as polynomial in wy, 4)

A 2 2 2
P16 = w1,4a2,1a2,000,1 + W) 403 a1 — W) A@2,041,141,040,1

2 2
—2w2 4a2,1a2,000,1 + W2,402,107 (@01 + W2, AG2,04] | — d2,141,141,0
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will not vanish in the solutions of P;7 = 0, all solutions of wy 4 can be extended to
solutions of the third elimination ideal (Extension theorem). Continuing this proce-
dure leads to four solutions of the full system (only two of them are different w.r.t. the
equivalence relation of Definition 2). For more information on the Elimination and
Extension Theorems see [6,7]. A list of the corresponding Grobner basis can be found
in the supporting information. ]

Note that the proof of Proposition 3 also showed that
P(G2,1) D {a2,1A2K +ax0A* + a1 Ak +aroA + a1k + 1a; ;€ C*} ,

which means all polynomials of this shape have a preimage w.r.t. P. To calculate the
energies of molecule N in Proposition 3 one can use a computational algebra system
(Magma, Maxima) to solve (16) or use some special properties of (16): In general, not
only for this choice of n;, the coefficients (a; 0)i=1,....», define a system of algebraic
equations which allows to calculate (g1, ..., g,,) (proof of Proposition 2). Analo-
gously, (ao,i)i=1,...n, give (g4, ..., gAnz). In system (16), with the same argument,
wi,4 and wy, 4 are given by

1
WjA = —
glAZi
1
W2, A = —
gZAZj
where A, are the roots of
az_’lA2 + a]_’lA + 1.
8A 84

This calculation can also be used to prove Proposition 3 and will be used in the fol-
lowing to prove the more general case of (n1, 1) binding sites.

Proposition 4 Let

M M M M M
M:(gl ,...,gnl,gA,wl,z,...,wnl,A)

be a molecule with ny binding sites for Ligand L1 and one binding site for ligand Ly
(which is denoted as site A). Then a molecule

N= (glv~~-vgl‘11»gAa 11"'awl’l1,A)
exists withw; j =1Vi, j €{l,...,n1}and

Py = Py.
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Proof Let
Py = an, A"k +an, oA" + -+ a1 1Ak + a1 oA +ap 1k + 1

be the bp of M. Again, a decoupled molecule N is a point of the algebraic variety V
in the variables g1, ..., g4, w1,4, ..., Wy, 4 defined by the coefficients g; ; and the
corresponding equations. The equations of coefficients ay, 0, ..., a1,0 are free from
the variables w; ; since we are looking for a decoupled system. Thus, Corollary 1

gl\/es
( LI )_ A LA
gl g}'l]

with A, the roots of

any 0" + an 1 0A" T oA+ L (17)

Moreover, ap,1 gives g4. The remaining equations can be rewritten

ny

Aapy,1
= Hgiwi,A

8A i

Thus, the products g; w; 4 are determined by the roots of

: A"1+‘”’;JA”I‘1+~~+C;—"A+1. (18)
A A A

Aapy,1

Consequently, the interaction energies w; 4 can be calculated as the binding energies
gi are already known. |

5.2 The maximal number of decoupled molecules and properties they share

The proof of Proposition 4 also shows how many different decoupled molecules exist
at most.
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Corollary 2 Let
M M M M M
M:(gl,...,gnl,gA,wl’z,...,wnl,A)

be a molecule with ny binding sites for Ligand L and one binding site for ligand L.
Then there exist at most ny! different decoupled molecules.

Proof The proof of Proposition 4 shows that at most (n1!)? tuples exist which corre-
spond to the different permutations of the roots of polynomial (17) and polynomial
(18) and which solve the system. However, n1! tuples represent the same molecule.
Thus, the maximal number of different decoupled molecules is n1!.

Example 3 We illustrate the binding curves of individual sites of a system with two
binding sites for ligand L and one binding site for ligand L, and its corresponding
decoupled systems. We used other hypothetical binding and interaction constants than
in Example 2 to observe titration curves which can be distinguished by eye. To this
end, let

M = (g1, 82,84, W12, w1 4, w2 4) = (900, 900, 300, 10™*, 1000, 2000)
be a molecule. Its decoupled molecules are given by

N = (1799.955, 0.04500113, 300, 1, 1500.004, 1333.33)
K = (1799.955, 0.04500113, 300, 1, 0.03333491, 59997167).

The titration curves of the individual sites are illustrated in Fig. 1. Ligand L is regarded
as electron and ligand L, as proton.

An interesting observation is the fact, that in the titration curves of individual sites of
decoupled molecules the area of transition between 0.1 and 0.9 probability of occupa-
tion is comparatively small. However, it is difficult to quantify this feature. Moreover,
regarding the titration curves of the decoupled molecules it seems that the titration
curve of site 1 of molecule K is a composition of the “left part” of site 1 and the
“right part” of site 2 of molecule N. Analogously, the curve of site 2 of molecule K
seems to be composed of the remaining parts of the curves of sites 1, 2 of molecule
N. This observation leads to the conjecture, that there is a unique set of “bricks” all
decoupled molecules are built of. We will investigate this in the following. As the
titration curves of individual sites are sums of the probabilities of the microstates in
which the individual site is occupied, the constants of the microstates, which are listed
in Table 1 can give information about this observation. We see here, that in the decou-
pled systems of Example 3 the probabilities of the two events in which one electron
and the proton is bound are permuted. These probabilities are the unique “bricks” all
decoupled molecules are built of. Before we formulate this as Proposition, we define
the term macrostate.

Definition 3 Let M be a molecule with (n1, ny) binding sites. It is said to be in mac-
rostate (i, j), i <ny, j < npif —inits current microstate— exactly i ligands of type
L and exactly j ligands of type L, are bound.
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Fig. 1 Activity dependent ligand binding to each site of the original molecule M (left column) and of the
decoupled molecules N (middle column) and K (right column) of Example 3. A logarithmic scale of the
ligand activity is used: The chemical potentials . (e) :=log(A) and pn(H) :=log(x). In the case of protons
as second ligand log(x) equals the negative pH. Dark blue area: probability of occupation is equal to or
higher than 0.9. Red area: probability of occupation is less than or equal to 0.1. Green area: probability of
occupation between 0.25 and 0.75. (Color figure online)

Proposition 5 Let

M M M M M
M=(g1 ""’gnl’gA’wl,Z""’wm,A)

be a molecule with ny binding sites for ligand L1 and one binding site for ligand L.
Moreover, let the order of the sites in the decoupled molecules be fixed to the same
permutation. Then the following statements hold:
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Table 1 Constants of all microstates of the different molecules of Example 3: M = (900, 900, 300,
10*4, 1,000, 2, 000) and N, K the corresponding decoupled molecules

Microstate M N K

(0,0,0) 1 1 1

0,0, 1) 300 300 300

(0, 1,0) 900 0.04500113 0.04500113
(1,0,0) 900 1799.955 1799.955
(1,1,0) 81 81 81

0,1,1) 5.4 x 108 18000.4 8.09982 x 108
1,0,1) 2.7 x 108 8.09982 x 108 18000.4
1,1,1) 4.86 x 1010 4.86 x 1010 4.86 x 1010

The binding sites 1 and 2 for the first type of ligand are described by the first and the second entry of the
microstate. The third entry of the microstate corresponds to site A, the binding site for the second ligand

(@)
(b)

()
(@)

For every microstate k with unoccupied site A, all decoupled molecules share
the same microstate constant g(k).

For every macrostate (i, 1) with occupied site A and i occupied sites for ligand
Ly, there exist ("ll) numbers such that for any decoupled molecule the tuple of its
constants of microstates belonging to this macrostate is a permutation of these
numbers.

The permutation of microstate constants of macrostate (1, 1) fixes the permuta-
tions of the microstate constants of all other macrostates (i, 1).

Every decoupled molecule can be identified one to one with a permutation of the
microstate constants of macrostate (1, 1).

Proof (a) Let k be a microstate in which site A is unoccupied. Then its constant is

(b)

(c)

the product of the binding constants of the sites which are occupied. According to
Proposition 2 all decoupled molecules share the same binding constants which
gives the first statement, since the permutation of {g1,--- , g} wWas assumed
fixed, previously.

Let k be a microstate in which site A is occupied. Eq. (5) states that its constant
is the product of the binding constants of all occupied sites and their interaction
constants. As the interaction constants of any pair of binding sites for the same
type of ligand are 1, this reduces to

Tk gk
gty =ga s wi'y- (19)
i=1

Since the decoupled systems share the binding constant g 4 and since the products
(giw;i A)i=1,....n, correspond to the permutations of the roots of polynomial (18),
the microstate constants of different decoupled systems belonging to the same
macrostate are permutations.

Let a permutation of the microstate constants belonging to macrostate (1, 1) be
chosen. Then all interaction constants are determined as the microstate constants
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are given by a product of g;gaw; 4 and g;, g4 are known. Thus, the molecule is
known and all other constants are determined.

(d) Let N, K be two different molecules. Then their permutation of the microstate
constants of macrostate (1, 1) differs, as otherwise N = K due to identical inter-
action constants (injectivity). Conversely, every permutation of the microstate
constants solves the system described by polynomial (18) (surjectivity). (]

Remark 1 In Proposition 5, we used the term permutation for a permutation of num-
bers. This means that different permutations of the symmetric group S, can be regarded
as equal if some numbers are equal.

5.3 Titration curves of individual sites

Onufriev et al. [14] and Martini and Ullmann [12] showed, that it is possible to regain
the titration curve of each individual binding site as linear combination of the titration
curves of the individual sites of the decoupled system in the case of only one type of
ligand. We will show that this can be generalized to the situation of two types of ligands
in a certain way. We use the notation (x;) for the average amount of bound ligand L
at site i and (y;) for the average amount of bound ligand L at site j (as a function
of ligand activities). In the following we investigate the case (n1, ny) = (2, 1). With
M= (g}, ), ga, wihy, wil,, wl!,) amolecule, N = (g1, g2, g4, 1, w14, wa.4) a
corresponding decoupled system, and bp

Py = Py = az’lAZK + Clz,()/\2 + a1 1Ak + a0 + gak + 1,
the titration curves of individual sites are given by:

Py xi)m = a211A2K + az,oAz + g{WgAw{‘fIAAK + g{”A

Py(x1)y = Py{x1)n = a2 1 A%k + apoA* + grgawi aAx + g1 A
Py{(x2)n = Py{x2)n = as.1 A%k + ap 0 A% + gagawa a Ak + g2,

Thus, due to equality of the coefficients, the solutions (by, by) to
(x1)m = bi(x1)n + ba(x2)N

coincide with the solutions to the linear system

1 1 1
b
SI8AWI,A &28AW2, A (b;) = | s gawl’ (20)
81 ) M

Obviously, the problem in this situation is the following: there are three (possibly lin-
early independent) equations and only two variables. However, a linear combination
can always be found the following way:
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Proposition 6 Letr M = (g{u, géu, g4, w%, w{WA, wé"[A) be a molecule with two
binding sites for ligand L (sites 1 and 2), one binding site for ligand L, (site A)
and with bp Py. Moreover, let N = (g1, 82, 84, 1, w1 4, w2, 4) be a corresponding

decoupled molecule. Then a continuous function b = b(x) on R\ { m}

exists, such that

(xi)ym =blx1)y + (1 = b){x2)n 1)
and

(x2)m =b(x2)y + (1 = b){x1)n. (22)
The function b(k) is given by

ga@Mw, — gawp )k + g — g2
ga(giwia — Q2w Ak +81 — &

(23)

Note that g; gaw;, A are microstate constants.

Proof

Pu(xi)u = (817 g2 gaww! wi sk + g e wi) A% + (g gawl’ sk + g!HA

(24)
Py(x1)n = Pu(x1)n = (g1828aw1. aw2, 4K + g182) A> + (g18aw1 Ak + g1)A

(25)
Pu(x2)n = (818284 w1, a2, Ak + g182) A% + (g284w2, Ak + g2) A (26)

As N and M share the same bp:
gV e gawlhw wil ik + gV ¥ wll) = g1gagawi awz ak + 182 k.

This means that (b1, b2) = (b1(x), ba(k)) is a solution to Eq. (21) iff
() = (reantte )
by) ~ \elgaw} e+ ¢} )"

1 1
where A = .
818AW1 AK + 81 828AW2 AK + 82

Ifk # m then det(A) # 0and there exists a unique solution for (b1, by)

with b := b; = 1 — by which gives Eq. (23). Moreover, since
(xi)nv + (v = v + (2dy = b{xi)n + (1 = b)(x2)n + (x2)m

this proves Eq. (22). O
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Fig. 2 Electron-activity (p(e) := log(A)) dependent electron binding to site 1 of molecule K of Example
3 for fixed pH = 6 = —u(H).

5.4 The existence of pointwise decoupled systems for every activity «

Regarding the 1-dimensional titration curve of site 1 of molecule K of Example
3 for fixed ligand activity pH=06, we see that it is not of classical Henderson-
Hasselbalch form (Fig. 2). This means that even though the electron binding sites
have a trivial interaction constant in the decoupled molecule, the sites do not bind the
ligand independently. This result may be counterintuitive as the electron binding sites
do not interact directly. However, a secondary interaction of the electron binding sites
results from the interaction with the proton. Let M = (g1, g2, 84, W1.2, Wi, 4, W2,4)
be a molecule with two binding sites for ligand L (sites 1, 2) and one binding site
for ligand L, (site A). We investigate the following question: Which conditions on
the binding and interaction constants are necessary to let the titration curves of the
individual sites (x1) and (x,) be decoupled for all «?

Proposition 7 Let M = (g1, g2, 84, W1,2, W1,4, W2, 4) be a molecule.

Then the 1-dimensional titration curves of sites 1 and 2 are decoupled for all k if
and only if w12 = 1and (wi o =1 orwz a =1).

Proof = Let M be a molecule as described. Its bp is given by

Pu(A, k) = g1828aw1 2w1 awa ANk + g1gawy 2 A?
+(g18aw1,A + g28aw2, 4A) Ak + (g1 + g2)A + gax + L.

As the sites 1 and 2 are decoupled for all « they are in particular decoupled for k = 0.
This implies wy 2 = 1. Thus, the titration curve of site 1 has the shape

(81828AW1, AW2, Ak + g182) A% + (g18aw1 Ak + g1)A
Py (A, ) ’

27)

We know that for all fixed « the molecule is decoupled, which is equivalent to all
titration curves being of HH shape, which implies in particular that (27) can be rewrit-
ten (for fixed «) as
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JACIV

LA+ 1 (28)

where gﬂ (k) depends on k but not on A (see [12,14]). This means that there exists a
factor a(x) € C[A] (a(x) has to be of degree one) such that

a()g (k) A = (81828aW1,Aw2AK + g182)A° + (g18aw1 Ak + DA (29)

and
a(k) (g (K)A + 1) = Py (A, k). (30)
Regarding these polynomials as elements of C[A] we see that the constant term of
Py (A, k) is given by gax + 1. Moreover, the constant term of (g} (k)A + 1) is 1.
This implies that a(x) has constant term gak + 1. As g{(«) is independent of A

Eq. (29) implies

(g18aw1, 4k + 81)

(k) = 31
81(x) eak + 1 (€29)
k41 wi Awp Ak + 1
ae) = (84 )82(8AW1, AW2 A )A +eak + 1), 32)
(gawi, Ak + 1)
The same arguments for site 2 show that its titration curve is of shape (28) with
(828Aw2 Ak + 2)
&) = 228 82). (33)

gak +1

As the overall titration curve is the sum of the individual curves we have necessarily

g (A g (K)A
A +T  gA+1
_ 2(81828aw1,aw2AK + g182) A7 + (g18aW1.4 + g284 w2 AK + 81 + g2)A

Py (A, k)
(34)
Hence, a b(x) must exist which is independent of A such that
(81N + 1) (g5(k)A + Db(k) = Py (A, k). (35)

Again, a comparison of the constant term of the polynomials gives b(k) = (gak +1).
Thus, comparing the leading coefficients of the polynomials of Eq. (35) yields

(g18aw1, 4K + g1)(g28aw2, 4K + &2)
gak +1

= 21828AW1,AW2 AK + 8182 (36)
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which gives
(w4 +w Ak = (1 +wypawz a)k Ve

and thus

wiA(l —w2a) =1—wz 4. (37)
Eq. (37) shows that wy 4 # 1 implies wi 4 = 1.

”<="* Without loss of generality, let w1 4 = 1 = w; 2. Then, using notation of

Egs. (31, 32)

a(k) (g (k)A +1) = P(A, k)
and

a() g (k) A = (g1828aw2,aK + g182)A” + (g18aK + gD)A.

Thus, the 1-dimensional titration curve for fixed « (Eq. 27) reduces to

2 /
(81828aw2 Ak + g182)A” + (g18ak + gDA  g1(KA

= . 38
P(A, k) g1 (k)A +1 (38)
Moreover, the titration curve of site 2 for fixed « is given by
(g182w2, 4K + g182)A* + (28aw2 Ak + g2) A
P(A, k)
_ (g28aw2 4k + @) A(gIA+1) g (KA
(g1A + Da(x) SN+ 1
This means that sites 1 and 2 are decoupled. ]

Proposition 7 can be interpreted the following way: The different binding sites of a
molecule are decoupled for all activities of the second ligand if and only if they are
not ”connected*. To avoid different interpretations, we give an exact definition of this
term:

Definition 4 Let M be a fixed tuple with binding sites 1, ..., n for ligand L; and
binding sites Ay, ..., A, for Ligand L. Moreover, leti,j € {1,...,n, A1, ..., An}.
The sites i and j are called connected if a path I = {(i, k1), (k1, k2), ..., (kp, )}
exists with w; £ 1Vi € I.

Using this definition we conjecture that Proposition 7 can be generalized to molecules
with more binding sites.

Conjecture 2 Let M be a molecule with binding sites 1, ..., n for ligand Ly and
binding sites Ay, .., Ay, for ligand L. Then the binding sites for ligand Ly are 1-
dimensionally decoupled for all k if and only if all binding sites for ligand L\ are
pairwise not connected.
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6 Summary and outlook

We formulated the DSR for molecules with binding sites for two different types of
ligands and showed that if the overall binding curves of both ligands shall be preserved
not all interactions can be trivial. However, the binding sites for the same type of ligand
can be decoupled under the loss of uniqueness of the decoupled system which is given
when only one type of ligand is present. We proved this statement for the case of
(n1, 1) binding sites and presented different approaches for proofs. From a theoret-
ical point of view a general proof for any choice of n| and n, would be favorable.
Moreover, we showed, that even though there are several different decoupled systems
all of them share the same binding constants and seem to be built of a unique set
of "bricks* which are combined differently. For the case of (n1, 1) binding sites we
identified these “’bricks‘ as microstate constants (or mircrostate probability functions)
and showed that the maximal number of different decoupled systems is given by n!.
Furthermore, we showed that regaining original individual titration curves as linear
combination of decoupled molecules is possible if the weights of the linear combina-
tions are functions of the ligand activity of the second ligand. Regarding the titration
curves of decoupled systems revealed that even though the binding sites for the same
type of ligand in the decoupled molecule do not interact the 1-dimensional titration
curve, when the activity of the second ligand is fixed, are not in general of classical
HH shape. This is counterintuitive but a result of secondary interaction, which is not
present if the different sites are not connected.

Prospective work might investigate which unique properties all decoupled mole-
cules characterize for (n1, n2) systems and how decoupled molecules can facilitate
understanding the binding behavior of ligands to the original molecule. Proteins of
special biophysical interest such as proteins with electron and proton binding sites
which play an important role in electron and proton transfer chains such as photo-
synthesis should be decoupled exemplarily. Moreover, the DSR can also be applied
to other interacting systems consisting of a molecule and different types of ligands.
Examples are transporter systems in membranes with pH-gradient, co-transporter,
receptors with different types of signaling molecules, and toxin and target interaction.
This may also be of pharmacological interest if the average amount of receptor bound
drugs, dependent on their activity in blood, shall be calculated.
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Appendix: Supporting information

We used the following short Magma code for the proof of Proposition 3:
## Proposition 3

R<gl,g2,g3,wl3,w23,a21,a20,al1,al10,a01>:=PolynomialRing(Rationals(),10);
eqns:=|[
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glxg2xg34wl3+w23-a2l,
glxg2-a20,

glxg3swl3 + g2xg3+w23-all,
gl+g2alo,

g3—-a0l1

I;

I:=ideal<Rleqns>;
GB:=GroebnerBasis(1);

GB;

## The corresponding Groebner basis

[

gl + g2 — al0,

@22 — g2%al( + a20,

g2swl3xa2l — g2sw23xa2l + wl3w23+xa20xall — wl3xa2lxal0,

g2swl3sxall — g2sw23xall — wi32xa20+a0l — wi3+w23xal0"2xa01 — w23"2xa20xa0l
+ w23xallxal0Q + 2xa2l,

g2swl13xa0l — g24w23%a0l — wi3+xalO+a0l + all,

22:4w23"2xa20%a01 — g2xa2l — w23xa20xall + a2lxalO,

g2sw23%a20xall — g2+a2lxal0 + w232xa20"2xa0l — w23+a20«all+xal0 — a21xa20 +
a2lxal0"2,

g2sw23%al0%a0l — g2%all + wi3%a20+«a0l — w23+a20+a0l,

g2xa21xal0"2+%a01 — g2+a20+al 172 + wi3%a20"2xallxa0l — w23"2xa20"2xal0xa012
— w23%a20"2xal 1xa0l1 + w23xa20%allxal0"2xa0l + a2l%xa20%alO*xa0l —
a21xal0"3%all,

g3 — all,

wl132%a20%a0172 + wi3xw23xal0"2xa0172 — wl3«al1xalOxa0l + w23*2xa20xa01"2 —
w23+al 1xalO%a0l — 2xa21xa0l + all”2,

wl13+w23 2xa2 [xal0"2xa01 + wi3xw23 2xa20xal 1°2 — wl3+w23«a2lxal 1xal0Q +
wli3%a2172 + w23"3xa2l*xa20%a0l — w23 2*a2l*allxal0 — 2sw23%a21/2,

w13+w23M2%a20"2xal 102 — wi3+«w23xa21xa20xal 1xal0 + wi3xa2172xa20 +
w23 3xa2 1xa20"2xa01 — w23 2xa21xa20xal 1xal0 — 2+«w23xa21"2%a20 +
w23xa21"2xal 072,

w13+w23 2%a10"2xa0172 — wl3+«w23«al 1xalOxa0l + wi3xa21xa0l + w23"3*xa20xa0172
— w23 2xal 1xal0xa0l — 2xw23xa21xa0l1 + w23xall”2,

w13+w23xa20xa01 — a2l,

wl3xa21xa20xa01 + w23"3%xa20"2%a01"2 — w23*2xa20xal 1xalOxa0l —
2sw23xa21%xa20xa01 + w23xa2l+xal0"2xa0l1 + w23xa20xal 172 — a2lxallx*al0,

w23M#a20"2xa0172 — w23/ 3xa20*al IxalO0xa0l — 2xw23 2xa21xa20xa0l +
w23 2xa21xal0"2xa01 + w23 \2xa20xal 172 — w23«a2lxal1xalQ + a21/2
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